Predicting Alarms in Supermarket Refrigeration Systems Using Evolved Neural Networks and Evolved Rulesets
نویسندگان
چکیده
Supermarkets suffer serious financial losses owing to problems with their refrigeration systems. Most refrigeration units have controllers which output "high-temperature" and similar alarms. We describe a system developed to predict alarm volumes from this data in advance, and compare evolved and backpropogation-trained neural networks, and evolved rulesets for this task.
منابع مشابه
Frost Prediction on Evaporator Coils of Supermarket Display Cabinets Using Artificial Neural Networks
Defrosting in supermarket refrigeration systems is normally controlled by a preset time cycle with most display cabinets timed to defrost every 6 hours. It is widely acknowledged that timed defrost may cause a number of unnecessary defrost cycles and this reduces the energy efficiency of refrigeration systems as well as the accuracy of temperature control of the cases. This paper investigates t...
متن کاملUsing Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملPrediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کاملArtificial neural networks: applications in predicting pancreatitis survival
Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...
متن کامل